Conservative Multigrid Methods for Cahn-Hilliard Fluids

نویسندگان

  • Junseok Kim
  • Kyungkeun Kang
  • John Lowengrub
چکیده

We develop a conservative, second order accurate fully implicit discretization in two dimensions of the Navier-Stokes NS and Cahn-Hilliard CH system that has an associated discrete energy functional. This system provides a diffuse-interface description of binary fluid flows with compressible or incompressible flow components [44,4]. In this work, we focus on the case of flows containing two immiscible, incompressible and density-matched components. The scheme, however, has a straightforward extension to multi-component systems. To efficiently solve the discrete system at the implicit time-level, we develop a nonlinear multigrid method to solve the CH equation which is then coupled to a projection method that is used to solve the NS equation. We analyze and prove convergence of the scheme in the absence of flow. We demonstrate convergence of our scheme numerically in both the presence and absence of flow and perform simulations of phase separation via spinodal decomposition. We examine the separate effects of surface tension and external flow on the decomposition. We find surface tension driven flow alone increases coalescence rates through the retraction of interfaces. When there is an external shear flow, the evolution of the flow is nontrivial and the flow morphology repeats itself in time as multiple pinchoff and reconnection events occur. Eventually, the periodic motion ceases and the system relaxes to a global equilibrium. The equilibria we observe appears has a similar structure in all cases although the dynamics of the evolution is quite different. We view the work presented in this paper as preparatory for the detailed investigation of liquid/liquid interfaces with surface tension where the interfaces separate two immiscible fluids [37]. To this end, we include a simulation of the pinchoff of a liquid thread under the Rayleigh instability at finite Reynolds number.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison study of the conservative Allen-Cahn and the Cahn-Hilliard equations

In this paper, a comparison study of conservative Allen–Cahn and Cahn–Hilliard equations is presented. We consider two massconservative Allen–Cahn equations and two Cahn–Hilliard equations with constant and variable mobilities. The equations are discretized using finite difference schemes, and discrete systems of the equations are solved using a nonlinear multigrid method. The generation and mo...

متن کامل

Multigrid Methods for a Biharmonic Problem with Boundary Conditions of the Cahn-Hilliard Type

We present multigrid methods for a biharmonic problem with boundary conditions of the Cahn-Hilliard type. These multigrid methods are based on discretizations obtained by a quadratic C interior penalty method. Since the finite element space is a standard space for second order problems, multigrid solves for second order problems can be used naturally in the smoothing steps. We will present theo...

متن کامل

A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation

This work extends the previous two-dimensional compact scheme for the Cahn–Hilliard equation (Lee et al., 2014) to three-dimensional space. The proposed scheme, derived by combining a compact formula and a linearly stabilized splitting scheme, has second-order accuracy in time and fourth-order accuracy in space. The discrete system is conservative and practically stable. We also implement the c...

متن کامل

A multigrid solution for the Cahn-Hilliard equation on nonuniform grids

We present a nonlinear multigrid method to solve the Cahn–Hilliard (CH) equation on nonuniform grids. The CH equation was originally proposed as a mathematical model to describe phase separation phenomena after the quenching of binary alloys. The model has the characteristics of thin diffusive interfaces. To resolve the sharp interfacial transition, we need a very fine grid, which is computatio...

متن کامل

A conservative numerical method for the Cahn-Hilliard equation with Dirichlet boundary conditions in complex domains

In this paper we present a conservative numerical method for the Cahn–Hilliard equation with Dirichlet boundary conditions in complex domains. The method uses an unconditionally gradient stable nonlinear splitting numerical scheme to remove the highorder time-step stability constraints. The continuous problemhas the conservation ofmass and we prove the conservative property of the proposed disc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002